Function to impute miRNA expression profile from protein coding expression dataset

imirage(train_pcg, train_mir, my_pcg, gene_index, method = "KNN",
  num = 50, target = "none", ...)

Arguments

train_pcg

training protein coding dataset. a numeric matrix with with row names indicating samples, and column names indicating protein coding gene IDs.

train_mir

training miRNA expression dataset. a numeric matrix with row names indicating samples, and column names indicating miRNA IDs.

my_pcg

test protein coding expression dataset. a numeric matrix with row names indicating samples, and column names indicating protein coding gene IDs.

gene_index

either gene name (character) or index (column number) of miRNA to be imputed.

method

method for imputation, either "RF" for random forests, "KNN" for K-nearest neighbor or "SVM" for support vector machines. Uses KNN by default.

num

number of informative protein coding genes to be used in constructing imputation model. Default is 50 genes.

target

"none" (default), "ts.pairs", or dataframe/matrix/list. this argument accepts character strings to indicate the use of all candidate genes as predictors ("none), or use built-in TargetScan miRNA-gene pairs ("ts.pairs"). also accepts a dataframe , matrix or list object containing a column with names of miRNA and a column with the names of target genes.

...

optional parameters that can be passed on to the machine-learning method: RF (randomForest), KNN (knn.reg) or SVM(svm)

Value

a numeric vector with imputed expression levels of the miRNA

Examples

data(iMIRAGE.datasets) imirage(GA.pcg, GA.mir, HS.pcg, gene_index="hsa-let-7c", method="KNN", num=50)
#> [1] 2019.3563 1498.5680 1771.0472 2525.3074 3406.9625 1813.6320 3009.6051 #> [8] 2198.6933 3072.8239 1307.7639 2962.8586 1277.5310 2258.6073 2110.7417 #> [15] 5194.3184 2963.7463 1765.5263 3669.1882 1952.3878 3368.4370 1316.7190 #> [22] 2017.3545 1671.8867 5657.6180 1037.8135 3214.5502 5665.0500 1815.9127 #> [29] 2612.9871 2567.6086 2341.5214 2787.6283 2312.1913 1230.4309 2020.4602 #> [36] 969.7257 1145.1208 958.9258 1043.2435 1181.7525 1092.2694 2585.8381 #> [43] 4762.9124 1914.3931 1659.7709 2286.6204 1590.2248 987.3592 1146.6056 #> [50] 1086.8198
imirage(GA.pcg, GA.mir, HS.pcg, gene_index=25, method="KNN", num=50)
#> [1] 493.5657 423.0274 425.6345 675.1162 874.6808 425.8818 764.3591 #> [8] 496.1472 772.2783 349.8015 710.3138 363.3681 570.3462 429.7653 #> [15] 1275.3751 761.7610 429.0182 924.8438 488.8303 889.6338 323.1427 #> [22] 497.5615 341.6435 1649.1141 275.6821 812.9858 1655.2335 459.7502 #> [29] 643.1109 685.3456 550.1771 672.6437 556.0599 339.5751 455.9140 #> [36] 265.0739 304.1595 204.7350 287.0775 300.1527 252.7089 604.5987 #> [43] 1492.3055 508.2830 387.6598 616.8432 425.9734 211.1994 349.9980 #> [50] 280.1517