imirage.cv.Rd
Function to obtain accuracy parameters: correlation coefficient, P-value and RMSE of imputation model
imirage.cv(train_pcg, train_mir, gene_index, num = 50, method = "KNN", folds = 10, target = "none", ...)
train_pcg | training protein coding dataset. a numeric matrix with row names indicating samples, anSed column names indicating protein coding gene IDs. |
---|---|
train_mir | training miRNA expression dataset. a numeric matrix with row names indicating samples, and column names indicating miRNA IDs |
gene_index | either gene name (character) or index (column number) of miRNA to be imputed. |
num | number of informative protein coding genes to be used in constructing imputation model. Default is 50 genes. |
method | method for imputation, either "RF" for random forests, "KNN" for K-nearest neighbor or "SVM" for support vector machines. |
folds | number specifying folds (k) of cross validation to obtain imputation accuracy. Default is k=10. |
target | "none" (default), "ts.pairs", or dataframe/matrix/list. this argument accepts character strings to indicate the use of all candidate genes as predictors ("none), or use built-in TargetScan miRNA-gene pairs ("ts.pairs"). also accepts a dataframe , matrix or list object containing a column with names of miRNA and a column with the names of target genes. |
... | optional parameters that can be passed on to the machine-learning functions RF (randomForest), KNN (knn.reg) or SVM(svm) |
a matrix with three values corresponding to Spearman's correlation coefficient, P-value of the fit and root mean squared error (RMSE).
#> #> Running 10-folds cross-validation... #> Iteration 1 #> Iteration 2 #> Iteration 3 #> Iteration 4 #> Iteration 5 #> Iteration 6 #> Iteration 7 #> Iteration 8 #> Iteration 9 #> Iteration 10 #> Cross-validation complete#> PCC P-Value RMSE #> [1,] 0.7104839 1.348813e-05 1860.9367 #> [2,] 0.7296123 3.452757e-06 1748.7003 #> [3,] 0.7780488 6.065440e-08 1898.8891 #> [4,] 0.9039841 1.032795e-10 2035.1897 #> [5,] 0.7355742 1.534201e-06 1679.2552 #> [6,] 0.7283422 2.656697e-06 1576.6199 #> [7,] 0.5344575 1.895061e-03 2438.9442 #> [8,] 0.5957086 4.093539e-03 1069.9556 #> [9,] 0.6751337 2.648629e-05 1818.1154 #> [10,] 0.6792510 1.277875e-06 941.1613imirage.cv(GA.pcg, GA.mir, gene_index=25, method="KNN", num=50)#> #> Running 10-folds cross-validation... #> Iteration 1 #> Iteration 2 #> Iteration 3 #> Iteration 4 #> Iteration 5 #> Iteration 6 #> Iteration 7 #> Iteration 8 #> Iteration 9 #> Iteration 10 #> Cross-validation complete#> PCC P-Value RMSE #> [1,] 0.7157895 9.499217e-07 371.1923 #> [2,] 0.7879297 5.444091e-07 519.1403 #> [3,] 0.5757809 1.924680e-04 832.8063 #> [4,] 0.4890110 1.042596e-02 265.2230 #> [5,] 0.6843854 1.032461e-06 548.5190 #> [6,] 0.7036707 2.413066e-05 383.0526 #> [7,] 0.8089296 0.000000e+00 529.3712 #> [8,] 0.8061538 2.942123e-06 734.5251 #> [9,] 0.6521261 7.776225e-05 532.4604 #> [10,] 0.5132693 1.575642e-02 317.4095